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Abstract—Understanding causality is a longstanding goal
across many different domains. Different articles, such as
those published in medical journals, publish newly discovered
knowledge, often causal. In this paper, we use this intuition
to build a model that leverages causal relations to unearth
factors related to Sjögren’s syndrome. Sjögren’s syndrome is
an autoimmune disease affecting up to 3.1 million Americans.
The uncommon nature of the disease, coupled with common
symptoms of other autoimmune conditions such as rheumatoid
arthritis, it is difficult for clinicians to timely diagnose the
disease. This is further worsened by suboptimal communication
between dentists, and physicians, including rheumatologists and
ophthalmologists, because clinical manifestations of this disease
require the patients to visit physicians with different specialties. A
centralized information system with easy access to common and
uncommon factors related to Sjögren’s syndrome may alleviate
the problem. We use automatically extracted causal relationships
from text related to Sjögren’s syndrome collected from the
medical literature to identify a set of factors, such as “signs and
symptoms” and “associated conditions”, related to this disease.
We show that our approach is capable of retrieving such factors
with high precision and recall values. Comparative experiments
show that this approach leads to 25% improvement in retrieval
F1-score compared to several state-of-the-art biomedical models,
including BioBERT and Gram-CNN.

Index Terms—causal relationships, relationship extraction, text
mining, sjogren’s syndrome

I. INTRODUCTION

Causal relationships depict essential knowledge across many
different fields, including medicine and health. Researchers
in these fields design and conduct experiments to establish
causality between two events and publish their findings in
research articles. Such research articles record the discovery
of new causal relationships or new conditions for existing
relationships. Thus, mining such relationships from authentic
text, such as published research articles, provides a unique
opportunity to aggregate causal knowledge in a field. This is
particularly true in the area of health and medicine, where for
many diseases, diagnosticians are not aware of all factors as-
sociated with a disease; as a result, diagnosis is often delayed.
An example of such a disease is Sjögren’s syndrome. Sjögren’s
syndrome is an autoimmune disorder where the immune sys-
tem destroys glands that produce tears and saliva [1, 2] and is
also associated with rheumatic disorders [3, 4, 5]. Most people

with Sjögren’s syndrome have limited symptoms, such as dry
eyes and mouth. Their general but lack of timely intervention
may affect other body organs, including the kidneys, blood
vessels, lungs, liver, pancreas, and brain [6]. Moreover, the
primary symptoms for Sjögren’s syndrome are spread across
several domain areas, such as dentistry, ophthalmology, and
rheumatology. This lack of continuity and suboptimal commu-
nication between dentists and physicians create a critical gap in
adequately understanding the disease’s characteristics. Hence,
it becomes a challenge for clinicians to diagnose Sjögren’s
syndrome timely.

Several studies have addressed many research questions re-
lated to Sjögren’s syndrome and published the findings in peer-
reviewed journals. These journal articles contain significant
results about Sjögren’s syndrome concerning new symptoms,
risks, and associated conditions [2, 7, 8, 9]. However, many
such findings remain within the confines of those articles
and are seldom used in practice [10]. The volume of these
articles makes it hard to find little-known factors and use
them effectively in diagnosis. In this paper, we present a
novel information extraction method to retrieve such factors
related to Sjögren’s syndrome that will help clinicians across
specialties to timely diagnose and treat patients with Sjögren’s
syndrome. The factors related to Sjögren’s syndrome that may
benefit clinicians can be classified into four categories – (1)
signs and symptoms, (2) risk factors, (3) associated conditions,
and (4) diagnostic tests [3, 11]. Among these four categories,
relationships between “signs and symptoms” and “associate
conditions” are often expressed using causal semantics. For
example, “Sjogren’s syndrome can cause not only corneal
perforation but also mucosal perforation which may lead to a
lacrimal fistula” [7] - this sentence expresses the possibility of
two symptoms that might be caused by Sjögren’s syndrome.
In this paper, we present a novel method to identify causal
sentences from research articles and use them to unearth little-
known factors related to Sjögren’s syndrome.

There are numerous way causality can be expressed in
natural language text; as a result, extracting causal knowledge
from text is a challenge. Causality can be stated explicitly
(e.g., mosquito bite causes malaria) where the relationship is
explicitly stated with a clear marker – causes [12, 13], as well
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as implicitly (e.g., Last week temperature rose significantly,
there were several cases of heat stroke reported), without using
causal markers. Past works have used many machines and deep
learning based approaches [13, 14, 15, 16, 17], but they only
target explicit causality and cannot holistically extract causal
relationships. They also ignore that text presents causality
through multi-word expressions or phrases instead of single
words. Another drawback of these methods is that they essen-
tially approximate a function, and we need more versatility
to extract causal relationships from a vast text-domain. We
propose an unsupervised framework for the causality extrac-
tion from sentences using Deep Q Reinforcement Learning
(RL) method [18]. Given a sentence or a document, we aim
to extract two sets of words and phrases connected by a causal
semantic (which may not be explicit). To extract such words,
we propose an RL agent that will iterate over multiple episodes
(subsamples of data) and increase the chance of identifying
the correct cause words or causal phrases along with the
related effect words or phrases by maximizing a reward. We
train and test the model on two separate datasets containing
causal sentences, SemEval-2010 and ADE[19, 20] and apply
the trained model on a different dataset built for Sjögren’s
syndrome from abstracts collected from the PubMed database.
The causal relationship extraction model was performed with
an F1-score of 0.89 and 0.87 on the SemEval-2010 and ADE
datasets, respectively. We compared these results with several
baseline models and related works that used the same dataset.
We found that our model’s performance was slightly lower
than just one model [21] (F1-score: 90.6) on SemEval-2010
but outperformed the state-of-the-art models trained on the
ADE dataset. We observe similar patterns while extracting
factors related to Sjögren’s syndrome. The precision and
recall for our method in extracting Sjögren’s syndrome-related
factors were 0.85 and 0.78 respectively (F1-score: 0.81), which
was at least 25% better than other state-of-the-art models, such
as, Gram-CNN and BioBERT.

II. BACKGROUND AND RELATED WORK

Researchers in many fields, design and conduct experiments
using methods like, observational studies and randomized
control trials to determine whether two events are causally
linked, and scholarly articles publish newly discovered causal
knowledge emerging from those studies. We see a broad
spectrum of work that attempts to retrieve such known causal
relationships from a large corpus of documents and apply them
to problems like question answering [22], medical education
[23], and financial analytics [24], among others. Expressing
causality in a sentence may take several forms; the majority
of them are marked but maybe explicit or implicit. Explicit
causality has relations that are connected by: (a) causal links
(e.g., hence, therefore); (b) causative verbs (e.g., causes,
leads to); (c) conditional (e.g., if...then...) [25]. The sentence:
“mosquito bites cause malaria,” where the cause and effect are
directly linked by the word ”cause” [12, 13] is an example of
explicit causality. Implicit causality involves using ambiguous
connectives, e.g., as, after etc., as they are equally likely to

be used in causal or non-causal context. For example, “as”
is used as a causal marker in the sentence: “There was no
debate as the Senate passed the bill on to the House” [12].
Some causal sentences may not have any connectives, for ex-
ample, the sentence: “Last week temperature rose significantly,
there were several cases of heat stroke reported”), where the
relationship rising temperature is the cause of the heatstroke
cases has no causal marker. These are called unmarked causal
sentences. Causal relationships may span across the sentence.
For example, the following two sentences depict a causal
relationship [financial stress → divorce]: “Being unfaithful can
lead to divorce. On the other hand, financial stress is another
significant factor.” [26]. Most approaches [16, 27, 28, 29]
identify causality in the basic levels, which are explicit and/or
intra-sentential forms.

Past works that addressed this problem can be broadly
divided into three groups: rule-based, statistical machine
learning(ML)-based, and deep learning-based approaches. Ear-
lier works were mainly rule-based, where linguistic patterns
were used to detect explicit causality [28, 30]. Girju et al. [31]
devised a novel approach to a rule-based system, where lin-
guistic patterns were automatically learned instead of manually
setting up the rule base. Inspired by previous works that used
lexico-syntactic patterns to infer causation, a new suite of
ML-based methods emerged. Meuller et al. [32] presented
a novel method and a working prototype that automatically
extracts both causes and effects and signs, mediators, and
conditions from scientific papers. CausalTriad [33] used a
minimally supervised approach, using distributional similarity
and discourse connectives. Few other works exploited linguis-
tic structures, such as multi-word expressions [34], N-grams,
topics and sentiments [35], lexical patterns [31, 36].

With the emergence of deep learning methods, we ob-
serve their application in extracting causal relationships from
the text [14, 37, 38]. Xu et al. [39] used LSTM to learn
higher-level semantic and syntactic representations along the
shortest dependency path, while Li et al. [40] combined
BiLSTM with multi-head self-attention to direct attention to
long-range dependencies between words. The latter showed
significant improvement when the cause-effect words have
greater separation. Some studies demonstrate that attention,
especially of the multi-attention mechanism, shows better
performance [40, 41]. In addition to RNN, we observe the
use of CNN; an example is by Wang et al. [41], who
proposed a multi-level attention-based CNN model to capture
entity-specific and relation-specific information and the use
of graph-based deep learning models, such as GCN. Zhang
et al. [42] proposed a dependency tree-based GCN model to
extract relationships. Recently, we have seen the application
of contextual word embeddings and large pre-trained language
models in this space. Kyriakakis et al. [16] used BERT [43]
and ELMO [44] showed that with large datasets, these models
could improve previous state-of-the-art performance. Zhang et
al. [45], combined LSTM with entity position-aware attention
to encode both semantic information and global positions of
the entities.
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III. SJOGREN’S SYNDROME

Sjögren’s syndrome (SS) is the second most common au-
toimmune connective tissue disease [1] affecting up to 3.1
million Americans [2]. It causes lymphocytic infiltration
of salivary and lacrimal glands resulting in dry mouth and
eyes. SS is common among middle-aged people, with a high
prevalence in females (female: male 9:1) [46] [47]. The exact
etiology of SS is not known [8] and is considered to be mul-
tifactorial due to endocrine, genetic and viral factors [48]. As
a result, the diagnosis of SS is delayed, and this causes undue
disease burden on Sjögren’s syndrome patients (SSP) [49].
Despite this disease burden, SS has not attracted the same
level of research rigor as other rheumatic diseases, such as
rheumatoid arthritis and systemic lupus erythematosus (SLE)
[49]. The unusual nature of the disease makes it difficult
to conduct sufficiently powered prospective clinical studies
longitudinally and determine the disease changes over time. A
lack of continuity and communication between dentists, and
physicians, including rheumatologists and ophthalmologists,
is also a crucial reason for the poor understanding of SSPs’
disease characteristics.

Moreover, SS shares common clinical manifestations with
other autoimmune conditions, such as rheumatoid arthri-
tis [50], and often SS is mistakenly diagnosed with these con-
ditions, thus further delays the diagnosis [51]. Therefore, more
research is needed to understand the SS disease progression
and characteristics that identify clinical features distinguishing
SS from other conditions leading to early diagnosis of SS and
treatment. This can be facilitated by identifying certain factors
associated with SS; this includes additional conditions that
frequently co-occur with SS, risk factors, and diagnostic tests
reported in the existing literature. Such a comprehensive list
of information will determine the prevalence of these findings
in the electronic health record (EHR) data of SSPs diagnosed
and managed in real-world clinical settings. Thus, identifying
uncommon or little-known factors extracted from the scientific
literature will help to build a comprehensive a knowledge base
of conditions that will help clinicians with more accurate and
timely diagnosis of SS is harder than solely referring to clinical
data.

This paper aims to establish a novel entity extraction model
that automates the retrieval of clinical findings relevant to SS
from the scientific literature. Such a model will support mining
relevant information from a large corpus of literature, which
is infeasible through a manual process. The factors related to
SS that we aim to extract from the scientific literature, such
as symptoms, associated conditions, and risks, are expressed
in the literature using some form of causal semantics. For
example, “dry mouth is caused by Sjogren’s syndrome.” Thus,
our goal is to design a causal sentence classifier that identifies
sentences with causal semantics and extracts the cause and
effect event pairs from those sentences.

IV. PROBLEM STATEMENT

We define the problem of identifying causal relationships
from natural language text as a sequence labeling task. If

Fig. 1. An example sentence 2with a causal relationship that highlights a
factor that may lead to Sjögren’s syndrome

an input sentence with n words is represented as X =
x1, x2, ..., xn, then produce an output sequence of length n,
Y = y1, ..., yn, where yi ∈ {CAUS,REL,EFF,NONE}.
The possible values of y represent the tags a word can be
labeled with. Here, CAUS represents a word or phrase of
words representing a causing event or factor, similarly EFF
represents the effect of the causing factor, REL represents
the relationship or the connective words/phrases that depict
the causal relationship. As we do not assume marked and
explicit causality, we will omit the REL tag. Finally, NONE
represents parts of the input sentence that do not contribute
to causality. Figure 1 shows an example causal sentence with
different labels. In this example, the words ‘Renal’, ‘tubular,’
and ‘acidosis’ will have the label CAUS, and the label of
‘hypokalemia’ will be EFF. NONE will be assigned to the
words, such as ‘which,’ ‘can,’ and ‘be.’ We assume that
majority of the sentences from a document will not depict
any causality and will have sequences of NONE as output.
The conditional probability of our model can be depicted as,

p(Y |X) =

n∏
i=1

p(yi|x1...i, yi=1...i−1)

Addressing this problem will require a model that embodies
the semantics of expressing causality while exploiting the
syntax that allows that structure. Given the nature of this
problem, a sequential model is more likely to perform better;
however, past works have shown that LSTMs and similar
models cannot exploit the syntactic structure of the input
sequences [52]. While a purely semantics-based model can
detect marked and explicit causal statements, identifying un-
marked or implicit causality in the text is beyond its scopes. A
sequential model assumes the start of the sequence from the
beginning of a sentence. This is natural as humans perceive
text in the same way, but information flow may follow different
directions. The root information of a sentence is in the verb,
which, according to the subject-verb-object structure followed
in English is usually in the middle of the sentence. This middle
verb section of the sentence will likely determine whether
a statement is causal. We exploit this non-linear syntactical
structure of a sentence by designing a reinforcement learning
agent that traverses the sentence along these non-linear paths
through adaptive actions and collecting rewards for the correct
identification of labels.

To identify factors related to Sjögren’s syndrome,
we analyze sentences where L(“Sjögren’s syndrome”) ∈
{CAUS,EFF}, where L(w) represents the label of the word w.
If L(“Sjögren’s syndrome”) = CAUS then ∀w,L(w) = EFF

2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822229/
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will represent factors caused by Sjögren’s syndrome and vice
versa. To generalize this approach, we relax the above con-
straint and state, N ( ”Sjögren’s syndrome”) ∈ {CAUS, EFF},
where N (x) represents the noun phrase containing x. This re-
laxation will not fail to associate factors of Sjögren’s syndrome
found in sentences like in Fig 1, where ”Sjögren’s syndrome”
is not directly part of EFF.

V. CAUSALITY EXTRACTION USING REINFORCEMENT
LEARNING

With new emerging Transformer models and architectures,
as well as the availability of pre-trained models, fitting a
model on annotated data is the easiest part of the process
but impractical considering such annotated data is scarce and
hardly available. Hence exploring unsupervised methods has
an additional value - they open an avenue for a discussion
where neatly annotated data is not a necessary blocker to get-
ting started with creating a valuable natural language model.
Specific domains often require subject experts to annotate
properly and cannot be outsourced to popular annotation
services. This is particularly true in our case, as labeling
requires prior knowledge on Sjögren’s syndrome.

Deep Reinforcement Learning in recent times has emerged
as a promising approach that can utilize popular architectures
(e.g., Transformers, CNNs, LSTMs, etc) while also going
a step further than function approximation toward general
Artificial Intelligence. This is possible because RL tasks
are formulated as an optimization strategy. We simulate an
agent playing a finite sequential game to improve the reward
obtained at each step gradually. The critical difference is that
this scalar reward neither needs ground truth labels nor has
to be differentiable - as long as the reward magnitudes reflect
the agent behaving favorably.

We propose an unsupervised framework for the causal-
ity extraction from sentences using A2C [53, 54] or Actor
Advantage Critic Method. The advantage of this framework
is that even though we lack ground-truth labels, essential
for supervised learning, we can creatively use pre-trained
models to assign a ’score’ or evaluate our predictions. We
use a combination of pre-trained models and hypotheses to
formulate the score (µt). The basic idea behind this is that
provided the predictions are correct, certain conditions must
hold. For instance, if the predicted cause and effect are correct
and they are indeed the phrases representing causal entities,
firstly, these entities should be noun phrases or compound
noun-like entities. Secondly, if we frame a new sentence using
these entities, the ‘conclusion’ phrase should be consistent or
‘agree’ with the premise phrase.

A. Reinforcement Learning Steps

A typical RL problem consists of the following setup: a
sequential task, where an agent starts at a initial position(s0),
and has to navigate through different steps to eventually reach
an endpoint(sT ), which is referred to as completing an episode.
At every step, the agent receives feedback on the decisions.
Based on the feedback, at time t, it tries to take action (at)

TABLE I
NOTATIONS USED IN THE REINFORCEMENT LEARNING SETUP

Notation Description

t Time step ‘t’
T Maximum time steps in an episode.
υ a random sub-sample of input sentences
θt Given υ, represents predictions at time

t
st State at time step t(subject to definition)
at Action taken at time step t. Action

may not necessarily be the same as
predictions, although they directly lead
us to the prediction. For instance, action
can be like softmax scores or proba-
bilities, while θt are the actual textual
prediction inferred from it.

µt Given an υ and corresponding θ, this
represents the score of the prediction or
how good it is.

rt Represents reward at time step

that will maximize the reward(rt). Eventually, after multiple
simulations of an episode and using an optimization algorithm,
the objective is to maximize the cumulative reward or

∑T
t=0 rt

for an episode. We use this setup and define st, rt and at to
ensure that maximizing

∑T
t=0 rt will improve the prediction

accuracy of labeling words in a sentence as cause and effect.
Table I summarizes the notations used in this model.

B. RL task setup

For a particular episode, we pick a random subsample(υ)
of sentences. At every step, the agent(in our case a neural
network), takes st as an input and predicts at, also giving us
θt (Table I). We score this prediction and assign value µt to
it accordingly; since we want to use previous feedback and
results to guide current action, we define the state(st) as a
collection of a time-invariant variable (input sentence) as well
as two time-dependent variables (previous state and scores)
incorporating the information of the trajectory after the start.

st = [υ, .at−1, µt−1]

Since RL algorithms optimize
∑T

t=0 rt, we define our
reward as:

rt = µt − µt−1

Thus,
∑T

t=0 rt is µt − µ0, meaning optimizing cumulative
reward is the same as improving the prediction score compared
to a random walk (based on our definition). As mentioned ear-
lier, we can leverage RL algorithms for unsupervised learning
since there are ways to use pre-trained models creatively in a
way that allows us to assign a score to a cause-effect prediction
automatically.

We assume that if one of the phrases, cause or effect is
known, we can frame questions to infer the other. Thus,
for every cause phrase, we define question templates: if {0}
and {1} represent the cause and effect phrases respectively,
then we can frame questions like. [What causes {1}?, What
does {0} cause?, Does {0} cause {1}?], say ω questions per
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every input sentence. We know that both cause and effect
belong to the set of noun phrases and that if they occupy
the places by {0} and {1} respectively, the questions can
be answered with high confidence. We use the pre-trained
QA model, which takes in two inputs - question and context
and returns two inputs - answer phrase and confidence score.
Hence for every sentence, we feed in ω different sets of inputs
(same context, different question), and finally pick the one
with the best confidence score. For example, for the sentence
- “the subjects were exposed to UV irradiation causing a local
tissue inflammation”, the question What is causing local tissue
inflammation? gave the best confidence score with the answer
uv radiation. Hence for the assignment: uv radiation and local
tissue inflammation respectively as cause and effect, the reward
(rt) will be higher. Figure 2 explains this process.

Fig. 2. Scoring method explained for the sentence “Studies have supported
that obesity accelerates AD-related memory impairement.” using question
templates

C. Actor Advantage Critique Algorithm (A2C)

The actor critique algorithm is based on Deep Q-learning
Network (DQN) [18] algorithm. This RL framework is used
along with actions and rewards designed based on our NLP
tasks to extract cause and effect pairs. This network uses
the Value function and Q-values at each state to compute
the usefulness and quality of the state. At each state st
consisting of υ , at−1 and µt−1 where sentence stays constant
whereas at−1 and µt−1 are the feedback terms. The µt−1 is
a scalar output and at−1 is a vector of 4× maxlen(υ). We
fix that the maximum length of a sentence is 80 words for
our experimentation, and we estimate the probability of every
word to be a cause or an effect word. The output vectors for
each word will have a size of four. Each element will represent
the probability of the word being the start of a cause phrase
ϕs(κ), the probability of the word being the end of a cause
phrase ϕe(κ), probability of the word to be the start of an
effect phrase ϕs(ϵ), and probability of the word to be the end
of an effect phrase ϕe(ϵ) respectively. Based on this probability
distribution, start and end indices of cause and effect phrases
are determined.

D. Architecture and setup

The goal of our model is to identify cause and effect phrases.
At each iteration of the state a sentence of length len(di)
is passed through Albert [55], a lighter version of BERT
[43] based transformer model with 12 million parameters
to generate sentence embeddings of size (len(di),768). This
output is then batch normalized [56] and is reduced by taking
a mean across the length l resulting in a vector of size (1,768).
Then the action at−1 output from the previous state of size

(80, 4) is reduced to (1,128) and batch normalized. This output
a
|
t−1 and µt−1 are combined into one single vector of size (1,

896), this output is further reduced and normalized to (1, 128)
and combined with the scalar epsilon from previous state ϵt−1.

VI. EVALUATION

We evaluate this work in two phases - (Task 1) evaluate
the performance of the causal relationship extraction model,
and (Task 2) validate the findings after applying this model to
extract factors for Sjögren’s syndrome.

A. Datasets

We use three different datasets to validate our approach.
We use the first two datasets – SemEval-2010 Task 8 and
Adverse Drug Effects (ADE) – to train and evaluate the causal
relationship extraction model (Task 1) and a custom dataset
built from articles related to Sjögren’s syndrome collected
from the PubMed database.

• SemEval-2010 Task 8 (SE2010) [19]: This dataset
contains sentences depicting a set of seven semantic
relationships, including cause-effect relations. It has in
total of 1,331 sentences that relate to causal relationships.

• Adverse Drug Effect (ADE) [20, 57]: This dataset
contains sentences explaining the adverse effects of drugs
using causal sentences. It has been curated from 1,644
PubMed abstracts and contains 6,821 causal sentences.
However, this dataset has minimal variation in terms of
syntax and vocabulary, and in all sentences, the causality
is expressed through the verb ”causes” and its variation.

• Sjögren’s syndrome dataset (SSD): We created this
dataset from 2,350 PubMed abstracts retrieved using the
keyword ”Sjögren’s syndrome” and its variants. This
dataset has 26,525 sentences, and we selected a subset
of 1,058 sentences for our analysis. The words in these
1,058 sentences were annotated using four labels – signs
and symptoms, risk factors, associated conditions, and
diagnostic tests. These sentences were simultaneously
labeled by two annotators, both domain experts, and
had prior experience working with Sjögren’s syndrome.
The annotators had 90.7% agreement in labeling these
sentences. After manually inspecting these sentences, we
found 383 sentences with causal semantics and used them
for task 2.

B. Performance of the Causal Relationship Extraction Model

We evaluated our model on the SemEval and ADE datasets
by comparing our findings with the ground truth labels. We use
the metrics precision, recall, and F1-score scores to estimate
the performance of identifying cause and effect from the
sentences. In both the datasets, only the cause and effect
are labeled and not relationship words; hence we ignore
our model’s RES labels during validation of the results. We
compare our findings with several baseline models, such as
Long Term Short Term neural memory network (LSTM) [58],
Bidirectional LSTM (BiLSTM) [59]. These architectures allow
the sequential information to flow in one direction (left to
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right) for LSTM and in both directions for BiLSTM. We
pre-processed the sentences to word representations using
pre-trained word embeddings from Glove vectors [60]. We
add another baseline model using the BERT language model
and the corresponding embedding [43]. We use a fully con-
nected network as the final classifier to output the labels.
Table II presents the performance across all these models.
Our approach outperformed all these baseline models, and
the F1-score is almost 6% better than the following best
(BERT-based) model. Given that our approach has a minimal
dependency on annotated data, the net performance boost is
even more.

Many previous works have used the same datasets and
developed causal relationships and extraction models. These
works have used a combination of statistical machine learning
and deep learning methods to identify causal relationships
from the text. We identified the best-performing models
from the literature for each dataset (SemEval and ADE)
and compare our performance. Among the best performing
model on SemEval-2010 is a variant of BiLSTM proposed
by Li et al. [17]. They combined BiLSTM with multi-head
self-attention to direct attention to long-range dependencies
between words. Wang et al. [41] also used an attention-
based model on CNN instead of BiLSTM. Presently, the best
performing model trained on SemEval-2010 is by Kyriakakis
et al. [21]. They used pre-trained language models, such as
BERT [43] and ELMO [61] and used Bidirectional GRU with
self-ATTention (BIGRUATT) as the base model. Experimental
results show that BERT model combined with BIGRUATT
performs better on most occasions and scales well with a
larger dataset, where the base model reaches a plateau. Among
the best-performing models trained on the ADE, the corpus
includes the model proposed by Wang and Lu [62], where
they focused on jointly modeling entities and relationships.
They used a sequence and a table encoder to help each other
jointly learn the entities and relations. Zhao et al. [63] used
a similar joint modeling technique but proposed Cross-Modal
Attention Network (CMAN) has two attention units consist-
ing of BiLSTM-enhanced self-attention (BSA) and BiLSTM-
enhanced label-attention (BLA) units. Table III presents the
summary of this comparative analysis and shows the F1 scores
in comparison to our approach. Our model outperformed other
top models trained on ADE. On the other hand, for SemEval-
2010, our model was marginally poorer than Kyriakakis et
al. [21]. Considering the performance across datasets, our
model is likely to perform at par or better than other models.

C. Identification of Factors related to Sjögren’s syndrome

We apply the causal relationship extraction model tested
on SemEval-2010 and ADE datasets on the Sjögren’s Syn-
drome Dataset (SSD) to identify causal sentences and the
corresponding cause and effect phrases to extract factors
related to Sjögren’s syndrome. The sentences in the SSD
dataset were manually annotated with four labels. Out of
1,058 annotated sentences, we found 383 causal sentences,
which are the potential candidates to unearth factors related

to Sjögren’s syndrome. As stated earlier, we assume causality
can only identify a subset of the factors, and extracting the
labels ”risk factors” and ”diagnostic test” is beyond its scope.
Hence, we omitted these labels during the evaluation. We
extract these factors by collecting the opposite label (either
cause or effect) when the term ”Sjögren’s syndrome” or its
variants is detected as cause or effect. We present a set of
selected causal-effect pairs extracted through our model in
Table IV. In these examples, we see that Sjögren’s syndrome
can appear as a cause as well as an effect, which represents the
possibility of how factors associated with Sjögren’s syndrome
are mentioned in the text, and the capability of our method
to detect them. In these selected examples, we see different
types of factors (or labels), such as signs and symptoms (e.g.,
“loss of secretion,” “xerophthalmia”) and associated conditions
(e.g. “annular erythema,” “non-Hodgkin’s lymphoma”). This
This conforms to our assumption that causality is more likely
to be used to represent the labels, signs and symptoms and
associated conditions.

To verify the above claim, we applied our model to the
labeled dataset where 1,058 sentences were annotated using
four labels. We collected the cause (or effect) associated with
the term “Sjögren’s syndrome” when it is the effect (or cause)
and computed the retrieval accuracy of those two labels. We
created a test set containing 100 sentences out of the 383
causal sentences (the remaining sentences were used to train
or fine-tune the baseline models). We retained only two labels,
“signs and symptoms” and “associated conditions,” for this
experiment. This approach of using causal relationships to
extract factors related to Sjögren’s syndrome performed with
a precision of 0.85 and recall of 0.78 (Table V).

We compared our findings with several baseline models
designed for sequence labeling. These were supervised mod-
els, trained on a set of 283 annotated sentences, and tested
on the same test set. Baseline models included BiLSTM
and a modified BiLSTM, where the output layer of the
BiLSTM model was fed into a CRF model. This approach
has been shown to improve performance in other applica-
tions [17]. In addition, we have used several other models
that have improved performance when trained on biomed-
ical text, including BioBERT [64]. Experiments show that
BioBERT has exceeded significantly in entity labeling and
relationship extraction on biomedical text compared to many
state-of-the-art models, including BERT [43]. We also applied
BioWordVec [65], a biomedical language model built using
fastText [66] and gram-CNN [67], which is trained for named
entity recognition (NER) task for biomedical literature. The
results from these experiments are summarized in Table V.

We validate our findings with the manually annotated
ground truth labels. We use precision, recall, and F1 score to
compare the performance of our approach. Table V summa-
rizes the findings. Our approach is unsupervised; hence, it can
identify the factors but cannot put a label (such as signs and
symptoms) next to them. Moreover, we targeted only two out
of four labels in the annotated set. We modified the supervised
training for the baseline models and removed the two labels for
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TABLE II
COMPARISON OF OUR REINFORCEMENT LEARNING METHOD WITH BASELINE MODELS

SemEval-2010 ADE
Precision Recall F1 score Precision Recall F1 score

Our approach (Reinforcement Learning) 0.93 0.86 0.89 0.88 0.85 0.86
LSTM-Glove 0.78 0.82 0.79 0.80 0.77 0.78
BiLSITM-Glove 0.82 0.80 0.81 0.82 0.84 0.82
BERT 0.87 0.83 0.84 0.86 0.831 0.84

TABLE III
COMPARISON WITH SELECTED RELATED WORKS

Dataset Model F1 Score
4SemEval-2010 Li et al. [17] 84.6

Wang et al. [41] 88.0
Kyriakakis et al. [21] 90.6
Our approach 89.4

4ADE Gurulingappa et al. [20] 70.0
Wang and Lu [62] 80.1
Zhao et al. [63] 81.1
Our approach 86.4

a fair comparison. In addition, we compressed the confusion
matrix for the baseline models and ignored any inter-label
misclassifications. This means if a model misclassified a
phrase to be “signs and symptoms” instead of “associated
risk” and vice versa, we considered it a correct classification.
This maintains parity with our approach, and the outcome is
consistent across all models, where we output factors without
a label (or name) associated with them.

We created a causal network by combining the individual
cause-effect pairs. In this network, each cause-effect pairs
were represented as two nodes connected by a directed edge
from cause to effect. Then the nodes were merged based on
similarity (i.e., same names) to have connected components
combining the preliminary isolated pairs. This network pro-
vides additional information, such as chains of transitive causal
relationships, and mediators, confounders through triangular
structures. Through this causal network, we have observed that
Tubulointerstitial nephritis is the most common renal disease
caused by Sjögren’s syndrome and may lead to renal tubular
acidosis (RTA), which in turn may cause osteomalacia. Even
though the entire sequence chain was not directly observed in
the data, the network could weave the individual relationships
and create a more holistic view of the knowledge. Figure 3
presents a part of the network.

VII. DISCUSSION

The long-term goal of this work is to create a nearly
exhaustive list of factors about Sjögren’s syndrome by mining
information from the medical literature. Like many other
diseases, the factors associated with Sjögren’s syndrome can
be categorized into four classes – “signs and symptoms”,
“risk factors”, “associated condition” and “diagnostic tests”.
In this paper, we specifically target two categories assuming
that these two factors share causal relations with the disease
and information about them in the text is represented using

Fig. 3. Screenshot of a part of the causal network

causal semantics. Our results confirm this assumption and
show that by using causal relationships, we can extract “as-
sociated conditions” and “signs and symptoms” with better
extraction performance than many other baseline sequence
labeling models. Although some of the baseline systems, such
as BioBERT and Gram-CNN, have been shown to perform
well, a few factors explain why the performance was poor in
this case. Firstly, these models are usually trained on larger
datasets and typically contain 5,000 or more sentences [64].
These models were tested on standard tasks, such as disease,
gene, protein identification, or specific relationships between
them. Large benchmark datasets are already available for these
tasks. Our case has no standard datasets, and we had to
collect and annotate manually. Moreover, this task requires
advanced knowledge in the domain area; annotation could only
be done by users with prior experience working on Sjögren’s
syndrome. As a result, annotation, in our case, was expen-
sive and time-consuming. Building a large enough dataset
for supervised models to perform well becomes impractical.
Thus, an unsupervised or semi-supervised method is better
suited to this context. Our method of detecting relationships,
specifically causal relations, is a more scalable approach to
address this problem.

Although we assume that causal relationships can be a
helpful tool to retrieve two of the four labels, the present
version of the causality extraction tool has some limitations,
it assumes that there is only one relationship pair in the
sentence. In reality, the sentences, particularly in scientific
articles, are much more complex. One single sentence may
have multiple relationships in multiple formats – triangular,
i.e., two causes leading to one effect or one cause leading to
two effects, transitive relations, and the presence of conditions
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TABLE IV
SELECTED EXAMPLES OF EXTRACTING FACTORS BY MINING CAUSAL RELATIONSHIPS

Sentence Cause Effect

1 Hypokalemic paralysis is a rare presentation of
Fanconi syndrome (FS) caused by Sjogren’s Syndrome. Sjogren’s Syndrome Hypokalemic paralysis

2
Primary Sjogren’s syndrome (pSS) is a chronic
systemic autoimmune disease that leads to sicca
symptoms, mainly xerophthalmia and xerostomia.

Primary Sjogren’s syndrome sicca symptoms, mainly
xerophthalmia and xerostomia

3
sjogrens syndrome (SjS) is an autoimmune
condition that primarily affects salivary and
lacrimal glands, causing loss of secretion.

Sjogren’s syndrome loss of secretion

4
71-year-old woman in whom the diagnosis of possible
causes of the development of annular erythema,
led the team to identify primary Sjogren’s syndrome (SS).

development of annular erythema primary Sjogren’s syndrome

5
Primary Sjogren’s syndrome (pSS) is characterized
by lymphocytic infiltration of the exocrine glands
resulting in decreased saliva and tear production.

Primary Sjogrens Syndrome decreased saliva and
tear production

6
Development of non-Hodgkin’s lymphoma (NHL)
is the major adverse outcome of Sjogren’s syndrome
affecting both morbidity and mortality.

Sjogren’s syndrome non-Hodgkin’s lymphoma

TABLE V
COMPARATIVE PERFORMANCE

Model Precision Recall F1-score
Bi LSTM 0.45 0.84 0.59
Glove Embeddings + CNN 0.47 0.72 0.56
Bi LSTM + CRF 0.05 0.4 0.1
BioWordVec + CNN [65, 66] 0.48 0.74 0.58
BioBERT [64] 0.39 0.55 0.46
Gram-CNN [67] 0.52 0.74 0.61
Our approach 0.85 0.78 0.81

that deems the relationship true—for example, the sentence.
“sjogrens syndrome (SS) is a rare condition characterized
by structural damage and secretory dysfunction of the
lacrimal and salivary glands that leads to dryness, partic-
ularly xerophthalmia (eyes) and xerostomia (mouth).” 3

demonstrates a transitive relation, and “Sjogren’s syndrome
(SS) is an autoimmune disease, among the most common ones,
that targets mainly the exocrine glands as well as extra-
glandular epithelial tissues.” 4 has a triangular relation, where
one event (Sjögren’s syndrome) is causing two conditions.
Identifying all such relations from a single sentence is beyond
the scope of this work. As part of future work, we will address
these limitations and build a more generic causal relationship
extraction model that can extract multiple relationships from
a single sentence, if present, furthermore, target inter-sentence
causal relationships.

The results (Table V) show the central hypothesis of this
work that causal relations can be used to extract certain factors
associated with Sjögren’s syndrome holds. It can retrieve
several more factors from the article text compared to other
baseline methods. However, on many occasions, associated
factors or signs and symptoms are present in a sentence
without any causal semantics. For example, the sentence “Two
years after the presentation, the patient developed dyspnea
cough and xerostomia” contains symptoms. However, due

3https://pubmed.ncbi.nlm.nih.gov/28862467/
4https://pubmed.ncbi.nlm.nih.gov/29881381/

to the absence of a causal semantic, our present model will
add this to the list of false negatives. To achieve the long-
term goals and improve the recall of the model, it is essential
to identify other relations that bind these factors with the
disease. Similarly, for more accurate retrieval, we assume that
“Sjögren’s syndrome ” will be present in the sentence and be
part of the cause-effect pair; hence, the above sentence will
not trigger our model for retrieval. This rationale for using
other relations in the future will also help to extract the other
two labels – ”diagnostic tests” and ”risk factors.” As these
two labels do not associate with the disease as a causality,
we need to investigate the relations that will help to discover
those factors. We will keep these tasks as part of the future
directions of this work.

VIII. CONCLUSION AND FUTURE WORK

This paper presents an innovative approach to extracting
factors related to Sjögren’s syndrome from medical journal
articles. We present a novel reinforcement learning-based
method to identify causal relations from text and show that
it outperforms most similar models. We apply this model to a
dataset of 383 sentences from a more extensive set of 2,530
abstracts taken from articles on Sjögren’s syndrome. Using
causal relationships, we aimed to extract two out of four labels,
“signs and symptoms” and “associated conditions,” and show
that our retrieval method has better precision, recall, and F1
scores than several supervised baseline models.

Although causal relations could effectively identify many
such factors, several other types of relations bind the factors
with Sjögren’s syndrome. To improve the retrieval perfor-
mance and cover the other two factors (“diagnostic test”
and “risk factors”), as future directions, we will investigate
other relations and build models that can identify and extract
these labels from the text. Furthermore, we will improve our
causal relationship extraction model to improve the coverage
of relationship extraction and be able to extract multiple causal
pairs from a single sentence, as well as discover inter-sentence
relations.
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